Files
freedavis/arduino/Davis.cpp
2019-08-22 16:12:05 +02:00

487 lines
14 KiB
C++

/*
Davis.cpp
Arduino library that implements the Davis Instruments wireless
weather station protocol for the RFBee.
Version 0.8
Copyright (c) 2012 by Ray H. Dees
NOTE: This code is currently below version 1.0, and therefore is
lacking some functionality or documentation, or may not be fully
tested.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "CC1101.h"
#include "Davis.h"
#include "SPI.h"
//
// Initialize the Global Variables.
//
volatile uint8_t hopIndex = 0;
volatile int pktRssi;
volatile uint8_t pktLqi;
volatile int freqError;
volatile uint16_t pktCount = 0;
volatile uint16_t pktMiss = 0;
volatile uint8_t timer = 0;
volatile uint8_t now = 0;
volatile uint8_t next = 64;
volatile uint8_t rxing = 0;
volatile uint8_t hopping = 0;
//
// Intialize Class Variables.
//
uint8_t DAVIS::rxBuffer[BUFFER_SIZE];
volatile uint8_t DAVIS::rxBufferIndex = 0;
volatile uint8_t DAVIS::rxBufferLength = 0;
volatile uint8_t DAVIS::freqComp[51];
//
// Implements the standard Arduino begin() function.
//
void DAVIS::begin(void)
{
NO_INTERRUPTS(); // Disable Interrupts while changes are made.
ADCSRA = 0x00; // Disable the analog comparator.
EICRA = 0x00;
EICRA |= (1 << ISC01 | 1 << ISC00); // Setup Interrupt 0 for Rising edge.
EIFR |= (1 << INTF0); // Clear pending interrupts.
EIMSK |= (1 << INT0); // Enable Interrupt 0.
//TCCR1B = 0x00; // Disable Timer 1.
//ASSR = 0x00; // Set Timer 2 to System Clock.
//TCCR2A = 0x00; // Reset TCCR2A.
//TCCR2A = (1 << WGM21); // Set CTC mode.
//TCCR2B = 0x00; // Reset TCCR2B.
//TCCR2B = (1 << CS22 | 1 << CS21 | 1 << CS20); // Prescale by 1024.
//TIFR2 = (1 << OCF2B | 1 << OCF2A | 1 << TOV2); // Clear pending interrupts.
//OCR2A = 0x4D; // Set Compare Match for .01 seconds.
//TIMSK2 = 0x00; // Reset TIMSK2. TIMSK2 &= ~(1 << OCIE2A) Defined as TIMER2_STOP.
//TIMSK2 = (1 << OCIE2A); // Timer 2 Compare Match A Interrupt Enable. Defined as TIMER2_RUN.
pinMode(SS, OUTPUT); // Set Slave Select as an OUTPUT.
digitalWrite(SS, HIGH); // Set it HIGH.
pinMode(GDO0, INPUT); // Set INT0 as an INPUT.
pinMode(GDO2, INPUT); // Set INT1 as an INPUT (Future Use).
//
// These pins correspond to LED's located on the Uart Bee.
//
pinMode(9, OUTPUT); // RSSI Pin - Indicates Hopping.
digitalWrite(9, LOW); // Set it LOW.
pinMode(14, OUTPUT); // ASSOC Pin - Indicates Sync.
digitalWrite(14, LOW); // Set it LOW.
pinMode(15, OUTPUT); // ON Pin (Not currently used.)
digitalWrite(15, LOW); // Set it LOW.
SPI.begin(); // Start the SPI.
SPCR |= (1 << SPR0);
reset(); // Reset the CC1101.
setRegisters(); // Configure the CC1101.
for (uint8_t i = 0; i < 6; i++) // Preset the frequency compensation.
freqComp[i] = DAVIS_FSCTRL0;
INTERRUPTS(); // Enable Interrupts.
}
//
// Reset the CC1101.
//
void DAVIS::reset(void)
{
digitalWrite(SS, HIGH); // Deselect the CC1101.
delayMicroseconds(10);
digitalWrite(SS, LOW); // Select the CC1101.
delayMicroseconds(10);
digitalWrite(SS, HIGH); // Deselect the CC1101.
delayMicroseconds(50);
digitalWrite(SS, LOW); // Select the CC1101.
SPI.transfer(CC1101_SRES); // Send reset command strobe.
digitalWrite(SS, HIGH); // Deselect the CC1101.
}
//
// Write the CC1101 Configuration Registers.
//
void DAVIS::setRegisters(void)
{
writeRegister(CC1101_IOCFG2, DAVIS_IOCFG2);
writeRegister(CC1101_IOCFG1, DAVIS_IOCFG1);
writeRegister(CC1101_IOCFG0, DAVIS_IOCFG0);
writeRegister(CC1101_FIFOTHR, DAVIS_FIFOTHR);
writeRegister(CC1101_SYNC1, DAVIS_SYNC1);
writeRegister(CC1101_SYNC0, DAVIS_SYNC0);
writeRegister(CC1101_PKTLEN, DAVIS_PKTLEN);
writeRegister(CC1101_PKTCTRL1, DAVIS_PKTCTRL1);
writeRegister(CC1101_PKTCTRL0, DAVIS_PKTCTRL0);
writeRegister(CC1101_ADDR, DAVIS_ADDR);
writeRegister(CC1101_CHANNR, DAVIS_CHANNR);
writeRegister(CC1101_FSCTRL1, DAVIS_FSCTRL1);
writeRegister(CC1101_FSCTRL0, DAVIS_FSCTRL0);
writeRegister(CC1101_FREQ2, DAVIS_FREQ2);
writeRegister(CC1101_FREQ1, DAVIS_FREQ1);
writeRegister(CC1101_FREQ0, DAVIS_FREQ0);
writeRegister(CC1101_MDMCFG4, DAVIS_MDMCFG4);
writeRegister(CC1101_MDMCFG3, DAVIS_MDMCFG3);
writeRegister(CC1101_MDMCFG2, DAVIS_MDMCFG2);
writeRegister(CC1101_MDMCFG1, DAVIS_MDMCFG1);
writeRegister(CC1101_MDMCFG0, DAVIS_MDMCFG0);
writeRegister(CC1101_DEVIATN, DAVIS_DEVIATN);
writeRegister(CC1101_MCSM2, DAVIS_MCSM2);
writeRegister(CC1101_MCSM1, DAVIS_MCSM1);
writeRegister(CC1101_MCSM0, DAVIS_MCSM0);
writeRegister(CC1101_FOCCFG, DAVIS_FOCCFG);
writeRegister(CC1101_BSCFG, DAVIS_BSCFG);
writeRegister(CC1101_AGCCTRL2, DAVIS_AGCCTRL2);
writeRegister(CC1101_AGCCTRL1, DAVIS_AGCCTRL1);
writeRegister(CC1101_AGCCTRL0, DAVIS_AGCCTRL0);
writeRegister(CC1101_WOREVT1, DAVIS_WOREVT1);
writeRegister(CC1101_WOREVT0, DAVIS_WOREVT0);
writeRegister(CC1101_WORCTRL, DAVIS_WORCTRL);
writeRegister(CC1101_FREND1, DAVIS_FREND1);
writeRegister(CC1101_FREND0, DAVIS_FREND0);
writeRegister(CC1101_FSCAL3, DAVIS_FSCAL3);
writeRegister(CC1101_FSCAL2, DAVIS_FSCAL2);
writeRegister(CC1101_FSCAL1, DAVIS_FSCAL1);
writeRegister(CC1101_FSCAL0, DAVIS_FSCAL0);
writeRegister(CC1101_RCCTRL1, DAVIS_RCCTRL1);
writeRegister(CC1101_RCCTRL0, DAVIS_RCCTRL0);
writeRegister(CC1101_FSTEST, DAVIS_FSTEST);
writeRegister(CC1101_PTEST, DAVIS_PTEST);
writeRegister(CC1101_AGCTEST, DAVIS_AGCTEST);
writeRegister(CC1101_TEST2, DAVIS_TEST2);
writeRegister(CC1101_TEST1, DAVIS_TEST1);
writeRegister(CC1101_TEST0, DAVIS_TEST0);
writeBurst(CC1101_PATABLE, (uint8_t*)PA_TABLE, 8);
setFrequency(hopIndex);
digitalWrite(15, HIGH);
}
//
// Write a strobe command.
//
void DAVIS::cmdStrobe(uint8_t command)
{
digitalWrite(SS, LOW); // Select the CC1101.
SPI.transfer(command); // Send strobe command.
digitalWrite(SS, HIGH); // Deselect the CC1101 .
}
//
// Write to a single register.
//
void DAVIS::writeRegister(uint8_t regAddr, uint8_t value)
{
digitalWrite(SS, LOW); // Select the CC1101.
SPI.transfer(regAddr); // Send register address.
SPI.transfer(value); // Send value.
digitalWrite(SS, HIGH); // Deselect the CC1101.
}
//
// Write to sequential registers.
//
void DAVIS::writeBurst(uint8_t regAddr, uint8_t *buffer, uint8_t length)
{
uint8_t addr, i;
addr = regAddr | WRITE_BURST; // Enable burst transfer.
digitalWrite(SS, LOW); // Select the CC1101.
SPI.transfer(addr); // Send register base address.
for(i = 0; i < length; i++)
SPI.transfer(buffer[i]); // Send values byte by byte.
digitalWrite(SS, HIGH); // Deselect the CC1101.
}
//
// Read from a single register.
//
uint8_t DAVIS::readRegister(uint8_t regAddr)
{
uint8_t addr, value;
addr = regAddr | READ_SINGLE;
digitalWrite(SS, LOW); // Select the CC1101.
SPI.transfer(addr); // Send register address.
value = SPI.transfer(0x00); // Read value.
digitalWrite(SS, HIGH); // Deselect the CC1101.
return value;
}
//
// Read from sequential registers.
//
void DAVIS::readBurst(uint8_t regAddr, uint8_t *buffer, uint8_t length)
{
uint8_t addr, i;
addr = regAddr | READ_BURST;
digitalWrite(SS, LOW); // Select the CC1101.
SPI.transfer(addr); // Send register base address.
for(i = 0; i < length; i++)
buffer[i] = SPI.transfer(0x00); // Read registers byte by byte.
digitalWrite(SS, HIGH); // Deselect the CC1101.
}
//
// Read the status from a register.
//
uint8_t DAVIS::readStatus(uint8_t regAddr)
{
uint8_t addr, value;
addr = regAddr | READ_BURST;
digitalWrite(SS, LOW); // Select the CC1101.
SPI.transfer(addr); // Send register address.
value = SPI.transfer(0x00); // Read status.
digitalWrite(SS, HIGH); // Deselect the CC1101.
return value;
}
//
// Sets Idle Mode.
//
void DAVIS::idle(void)
{
setIdleState();
}
//
// Sets Rx Mode.
//
void DAVIS::rx(void)
{
setRxState();
while ((Radio.readStatus(CC1101_MARCSTATE) & 0x1F) != CC1101_STATE_RX)
delayMicroseconds(900);
rxing = 1;
writeRegister(CC1101_IOCFG0, DAVIS_IOCFG0);
}
//
// Controls frequency hopping.
//
void DAVIS::hop(void)
{
digitalWrite(9, HIGH); // Turn on hopping LED.
hopIndex++; // Increment the index
if (hopIndex > 4) // Clamp at 51.
hopIndex = 0;
writeRegister(CC1101_FSCTRL0, freqComp[hopIndex]); // Write FSCTRL0.
setFrequency(hopIndex); // Set the frequency.
digitalWrite(9, LOW); // Turn off hopping LED.
}
//
// Sets the RX or TX frequency from the lookup table.
//
void DAVIS::setFrequency(uint8_t index)
{
idle(); // Make sure we are in idle state.
writeRegister(CC1101_FREQ2, pgm_read_byte(&FREQ_2[index])); // Write FREQ2.
writeRegister(CC1101_FREQ1, pgm_read_byte(&FREQ_1[index])); // Write FREQ1.
writeRegister(CC1101_FREQ0, pgm_read_byte(&FREQ_0[index])); // Write FREQ0.
flush(); // Flush everything.
}
//
// Receive the data packet.
//
void DAVIS::rxData(void)
{
uint8_t pktVerify, pktLength, freqEst, addr, i;
uint16_t pktCrc = 0xFFFF;
//////////////////////////////////////////// See Errata Note for this section.
pktVerify = readStatus(CC1101_RXBYTES) & 0x7F;
do
{
pktLength = pktVerify;
pktVerify = readStatus(CC1101_RXBYTES) & 0x7F;
}
while (pktLength != pktVerify);
////////////////////////////////////////////
if ((readStatus(CC1101_MARCSTATE) & 0x1F) == CC1101_STATE_RXFIFO_ERROR) // Check for Rx FIFO Overrun.
pktLength = 0;
if (pktLength == DAVIS_PACKET_LENGTH)
{
addr = CC1101_RXFIFO | READ_BURST;
digitalWrite(SS, LOW); // Select the CC1101.
SPI.transfer(addr); // Send register base address.
SPI.setBitOrder(LSBFIRST); // Reverse the bit order.
for(i = 0; i < 10; i++)
rxBuffer[i] = SPI.transfer(0x00); // Read rx data into the buffer.
SPI.setBitOrder(MSBFIRST); // Set the bit order back.
for(i = 10; i < 12; i++)
rxBuffer[i] = SPI.transfer(0x00); // Read RSSI & LQI into the buffer.
digitalWrite(SS, HIGH); // Deselect the CC1101.
pktCrc = calcCrc(rxBuffer, 8); // Get the CRC for first eight bytes.
//pktCrc = 0x0000; // Uncomment to disable CRC checking.
if (pktCrc == 0x0000) // If CRC = 0, valid data is now available.
{
now = timer = 0;
pktRssi = calcRssi(rxBuffer[10]);
pktLqi = (rxBuffer[11] & 0x7F);
freqEst = readStatus(CC1101_FREQEST);
freqError = calcFreqError(freqEst);
freqComp[hopIndex] = freqComp[hopIndex] + freqEst;
pktCount++;
rxBufferLength = pktLength;
rxing = 0;
writeRegister(CC1101_IOCFG0, DAVIS_DISABLED); // Disable CC1101 Rx interrupts.
digitalWrite(14, HIGH);
return;
}
}
idle();
flushRxFifo();
rx();
}
//
// Implements the standard Arduino available() function.
//
int DAVIS::available(void)
{
if (rxBufferIndex == rxBufferLength)
return -1;
else
return rxBufferLength - rxBufferIndex;
}
//
// Implements the standard Arduino read() function.
//
uint8_t DAVIS::read(void)
{
uint8_t value = 0x00;
if (rxBufferIndex < rxBufferLength)
{
value = rxBuffer[rxBufferIndex];
rxBufferIndex++;
}
else
rxBufferIndex = rxBufferLength = 0;
return value;
}
//
// Flushes FIFO's and the receive buffer.
//
void DAVIS::flush(void)
{
flushRxFifo(); // Flush both CC1101 FIFO's.
flushTxFifo();
for (int i = 0; i < BUFFER_SIZE; i++) // Flush the rxBuffer.
rxBuffer[i] = 0x00;
rxBufferLength = rxBufferIndex = 0;
}
//
// Calculates the 16 bit CRC using the Davis method.
//
uint16_t DAVIS::calcCrc(uint8_t *buffer, uint8_t length)
{
uint16_t crc = 0x0000;
while (length-- > 0)
{
crc = (crc << 8) ^ pgm_read_word(&CRC_TABLE[(crc >> 8) ^ (*buffer++)]);
};
return crc;
}
//
// Calculates the RSSI in dBm.
//
char DAVIS::calcRssi(uint8_t value)
{
int rssi;
if (value >= 128)
rssi = ((value - 256) >> 1) - 74; // CC1101 RSSI offset value.
else
rssi = (value >> 1) - 74;
if (rssi < -128)
rssi = -128;
return rssi;
}
//
// Calculates the Frequency Error for display purposes.
//
int DAVIS::calcFreqError(uint8_t value)
{
int error;
if (value >= 128)
error = ((value - 256) >> 1);
else
error = (value >> 1);
return error;
}
//
// INT0 Interrupt Service Routine.
//
ISR(INT0_vect)
{
Radio.rxData();
}
//
// Timer 2 Compare Match A Interrupt Service Routine.
//
ISR(TIMER2_COMPA_vect)
{
timer++;
if (timer >= 4)
{
timer = 0;
now++;
next++;
}
if (now >= 44 && rxing == 0)
Radio.rx();
}
//
//
//
DAVIS Radio;