Files
freedavis/web/modules/dynamic.py
2019-08-22 16:12:05 +02:00

921 lines
35 KiB
Python
Executable File

#!/usr/bin/python3
import cherrypy
import time
import datetime
import json
from pprint import pprint
from cherrypy.lib.httputil import parse_query_string
import config
# Universal variables
height_above_sea_level = 452
variables_known = ["range",
"granularity",
"start",
"end",
"type",
"retention"]
default_variables = {"range": "24h",
"granularity": "5m",
"end": "1s",
"type": "none",
"retention": "realtime"}
#------------------------------------------------------------------------------
# Generic Functions
#------------------------------------------------------------------------------
def check_GET(arguments):
'''Validates html query
Takes the key-val pairs and evaluates them against those variables, that
are defined as known to be safe to be parsed.
Args:
str(arguments):
"A string of options to be directly evaluated as a dictionary"
Returns:
list(str(variable)):
"List of strings, occupied by variables validated to be safe"
'''
_q = eval(str(arguments))
keys_to_process = {
key:_q[key] for key in _q.keys() if key in variables_known}
resulting_variables = default_variables.copy()
resulting_variables.update(keys_to_process)
return resulting_variables
#------------------------------------------------------------------------------
# Classes
#------------------------------------------------------------------------------
class Helper(object):
def __init__(self):
'''Helping calculations and functions
Some generic helpers, that do additional calculations, such as
percentages, predictions etc.
'''
pass
def winddirName(self, direction):
'''
Translate wind dire from deg to human readable (e.g. W, NW, NNW).
returns:
dict(): {"last": str(last_entry),
"details": list(detailed_table),
"watthours": str(watthours)}
'''
if 10.5 <= direction < 34.5:
result = "NNE"
elif 34.5 <= direction < 58.5:
result = "NE"
elif 58.5 <= direction < 82.5:
result = "ENE"
elif 82.5 <= direction < 106.5:
result = "E"
elif 106.5 <= direction < 130.5:
result = "ESE"
elif 130.5 <= direction < 154.5:
result = "SE"
elif 154.5 <= direction < 178.5:
result = "SSE"
elif 178.5 <= direction < 202.5:
result = "S"
elif 202.5 <= direction < 226.5:
result = "SSW"
elif 226.5 <= direction < 250.5:
result = "SW"
elif 250.5 <= direction < 274.5:
result = "W"
elif 274.5 <= direction < 298.5:
result = "WNW"
elif 298.5 <= direction < 322.5:
result = "NW"
elif 322.5 <= direction < 346.5:
result = "NNW"
elif 346.5 <= direction <= 359.9 or 0 < direction < 10.5:
result = "N"
#elif direction == 0:
# result = "ERROR, windvan broken"
else:
result = "NaN"
return result
def pressure_to_std_atm(self, raw_pressure, temperature, hasl):
try:
a2ts = raw_pressure \
+ ((raw_pressure * 9.80665 * hasl)\
/ (287 * (273 + temperature + (hasl/400))))
except:
a2ts = 0
#a2ts = raw_pressure + hasl/10
return a2ts
def percentageCalc(self, voltage, system):
''' Turns current charge for lead acid batteries into a human
readable %
Args:
float(voltage): Voltage in V
int(system): nominal system voltage, e.g. 12, 24, 48 etc
Returns:
float(percentage): Two decimal state of battery in percentage
'''
if system is 12:
percentage = round(24.5724168782\
* voltage * voltage - 521.9890329784 * voltage\
+ 2771.1828105637, 1)
elif system is 24:
percentage = 2.4442 * voltage * voltage\
- 82.004 * voltage + 602.91
elif system is 48:
# percentage = round((voltage - 46.5) * 18.87, 2)
percentage = round((voltage - 46.5) * 23.26, 2)
percentage = 100.00 if percentage > 100.00 else percentage
percentage = 0 if percentage <= 0 else percentage
return percentage
class DynamicEnergy(object):
def __init__(self):
''' Parse readings from victron MPPT via Ve.Direct stored in
InfluxDB
'''
self.influx_voltage_client = config.Conf.influx_voltage_client
self.helpers = Helper()
self.default_retention = 'realtime'
self.default_start = '24h'
self.default_end = '0h'
self.default_granularity = '5m'
def FreshValues(self, **kwargs):
''' Get most up-to-date energy reading.
returns:
dict(): {'state': str(),
'time': 'YYYY-mm-DDTHH:MM:SS.149636706Z',
'V_unit1': float(mV),
'Psol': fint(W),
'V_array': int(mV),
'ChCurr': int(mV)}
'''
bat_query = "SELECT voltage FROM mppt WHERE type = 'bat'" \
+ "ORDER BY time DESC LIMIT 1"
voltage_battery = self.influx_voltage_client.query(bat_query)
query = "SELECT last(*) "\
+ "FROM mppt "\
+ "WHERE time > now() - 10m "\
+ "GROUP BY type fill(0)"
state_query = "SELECT voltage,state FROM mppt "\
+ "ORDER BY time DESC LIMIT 1"
state_db_result = self.influx_voltage_client.query(state_query)
state = state_db_result.get_points(measurement='mppt')
db_result = self.influx_voltage_client.query(query)
bat = db_result.get_points(measurement='mppt',
tags={'type': 'bat'})
day = db_result.get_points(measurement='mppt',
tags={'type': 'day'})
prev_day = db_result.get_points(measurement='mppt',
tags={'type': 'prev_day'})
solar = db_result.get_points(measurement='mppt',
tags={'type': 'solar'})
total = db_result.get_points(measurement='mppt',
tags={'type': 'total'})
states = state.send(None)
bats = bat.send(None)
solars = solar.send(None)
days = day.send(None)
prev_days = prev_day.send(None)
totals = total.send(None)
result = {}
t_stamp = time.strptime(bats['time'].split('.')[0],
"%Y-%m-%dT%H:%M:%S")
result['time'] = time.strftime("%d.%m.%Y %H:%M:%S", t_stamp)
result['state'] = states['state']
result['ChCurr'] = bats['last_current']
result['V_array'] = bats['last_voltage']
result['perc_array'] = self.helpers.percentageCalc(
bats['last_voltage'],
48
)
result['Psol'] = solars['last_power']
result['Vsol'] = solars['last_voltage']
result['Wh_day'] = days['last_Wh']
result['Pmax_prev_day'] = days['last_Pmax']
result['Wh_prev_day'] = prev_days['last_Wh']
result['Pmax_day'] = prev_days['last_Pmax']
result['total_Wh'] = totals['last_Wh']
return result
def stat_values(self, **kwargs):
'''Max power and daily generation.
'''
# GET variables now set, ready to reference them
_days = kwargs['days'] + 1
date = datetime.datetime.strftime(datetime.datetime.now(),"%Y-%m-%d")
measures = []
result = []
query = "SELECT mean(power)*24 as DayWh, max(Pmax) AS Pmax "\
+ "FROM mppt WHERE type='solar' OR type='day' "\
+ "AND time > '{} 00:00:00' - {}d "\
+ "GROUP BY time(1d) fill(previous)"\
+ "ORDER BY time DESC"
query = query.format(date, _days)
measure = self.influx_voltage_client.query(query)
tm = []
P_max = []
Wh_sol = []
for datapoint in measure['mppt']:
row = []
tstamp = datapoint['time']
Pmax = datapoint["Pmax"] - 10
DayWh = datapoint["DayWh"]
result.append([tstamp[:10], Pmax, int(DayWh)])
return result[:-1]
def solar_graph_data(self, **q):
'''
Function to get solar readings from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time,V_solar,I_solar,P_solar,V_array
'''
retention = self.default_retention
range_start = self.default_start
range_end = self.default_end
granularity = self.default_granularity
retention = q['retention']
range_start = q['range']
range_end = q['end']
granularity = q['granularity']
mppt_measure = 'mppt_aggregated'
mppt_filter = ''
mppt_values = 'max(p_max) AS Psmax, min(p_min) AS Psmin, mean(power) as Psol, mean(voltage) AS V_array'
query = "SELECT {_values} " \
+ "FROM {_retention}.{_measure} WHERE {_filter} " \
+ "time > NOW() - {_range_start} " \
+ "AND time < NOW() - {_range_end} " \
+ "GROUP BY time({_granularity}), type fill(previous) ORDER BY time DESC"
query = query.format(
_retention = retention,
_range_start = range_start,
_range_end = range_end,
_granularity = granularity,
_measure = mppt_measure,
_values = mppt_values,
_filter = mppt_filter
)
db_results = self.influx_voltage_client.query(query)
power_raws_solar = db_results.get_points(measurement='mppt_aggregated',
tags={'type': 'solar'})
array_raws = db_results.get_points(measurement='mppt_aggregated',
tags={'type': 'bat'})
solars = [solar for solar in power_raws_solar]
voltages = [{"Varr":voltage['V_array'], "time":voltage['time']} for voltage in array_raws]
return {"solars": solars, "voltages": voltages}
class Expose(object):
def __init__(self):
''' Default expose class. Takes other classes and exposes them
via html. GET checks should be defined here.
Function args and kwargs don't need to be checked, as they are internal
and not exposed.
'''
self.energy = DynamicEnergy()
self.weather = DynamicWeather()
self.status = DynamicStatus()
self.iot = DynamicIoT()
self.helpers = Helper()
@cherrypy.expose
def index(self):
return "Index, MOFO"
@cherrypy.expose
def solar_realtime_data(self, **kwargs):
q = check_GET(kwargs)
res_type = q['type']
result = self.energy.FreshValues()
if res_type == 'json':
return json.dumps(result)
else:
return result
@cherrypy.expose
def status_realtime_data(self, **kwargs):
q = check_GET(kwargs)
res_type = q['type']
result = self.status.FreshValues()
if res_type == 'json':
return json.dumps(result)
else:
return result
@cherrypy.expose
def weather_realtime_data(self, **kwargs):
q = check_GET(kwargs)
res_type = q['type']
result = self.weather.FreshValues()
if res_type == 'json':
return json.dumps(result)
else:
return result
@cherrypy.expose
def solar_monitor(self, **kwargs):
q = check_GET(kwargs)
sol_monitor = self.energy.solar_graph_data(**q)
header = "time,P_solar,V_array\n"
yield header
for Psol,Varr in zip(sol_monitor['solars'],
sol_monitor['voltages']):
yield "{tm},{pmin};{p};{pmax},0;{v};{v}\n".format(
tm=Psol['time'],
pmin=Psol['Psmin'],
p=Psol['Psol'],
pmax=Psol['Psmax'],
v=Varr['Varr']
)
return sol_monitor
@cherrypy.expose
def wind_monitor(self, **kwargs):
q = check_GET(kwargs)
wind_monitor = self.weather.wind_graph_data(**q)
header = "time,Speed,Gusts,Direction\n"
yield header
for speed, gust, direction in zip(wind_monitor['w_speeds'],
wind_monitor['w_gusts'],
wind_monitor['w_dirs']):
yield "{},{},{},{}\n".format(speed['time'],
speed['value'],
gust['value'],
direction['value'])
@cherrypy.expose
def temphumi_monitor(self, **kwargs):
q = check_GET(kwargs)
temphumi_monitor = self.weather.temphumi_graph_data(**q)
header = "time,T(ins),T(out),Humi(ins),Humi(out)\n"
yield header
for Thin, Thout in zip(temphumi_monitor['th_ins'],
temphumi_monitor['th_outs']):
tm_temp = str(Thin["time"]).strip()
temp_in_val = str(Thin["Temp"]).strip()
temp_out_val = str(Thout["Temp"]).strip()
hum_in_val = str(Thin["Hum"]).strip()
hum_out_val = str(Thout["Hum"]).strip()
yield "{},{},{},{},{}\n".format(tm_temp,
temp_in_val,
temp_out_val,
hum_in_val,
hum_out_val)
@cherrypy.expose
def usense_temphumi_monitor(self, **kwargs):
q = check_GET(kwargs)
usense_temphumi_monitor = self.iot.usense_temphumi_graph_data(**q)
header = "time,T(tea),Humi(tea)\n"
yield header
for temp_humi in usense_temphumi_monitor['temphumis']:
tm_temp = temp_humi["time"]
temp_tea_val = temp_humi["temp"]
hum_tea_val = temp_humi["hum"]
yield "{},{},{}\n".format(tm_temp, temp_tea_val, hum_tea_val)
@cherrypy.expose
def pressure_monitor(self, **kwargs):
q = check_GET(kwargs)
pressure_monitor = self.weather.pressure_graph_data(**q)
header = "time,Pressure\n"
yield header
for Press, Tout in zip(pressure_monitor["press_raws"],
pressure_monitor["Touts"]):
tm = str(Press["time"]).strip()
pressure = self.helpers.pressure_to_std_atm(Press["pressure"],
Tout["Tout"],
height_above_sea_level)
yield "{},{}\n".format(tm, pressure)
@cherrypy.expose
def rrate_monitor(self, **kwargs):
q = check_GET(kwargs)
rrate_monitor = self.weather.rrate_graph_data(**q)
header = "time,Rrate,Rrate_max\n"
yield header
for Rrate in rrate_monitor["rrates"]:
tm = str(Rrate["time"]).strip()
rrate_val = Rrate["total"]
rrate_max = Rrate["max"]
yield "{},{},{}\n".format(tm, rrate_val, rrate_max)
# finish writing the source for this
@cherrypy.expose
def cpumem_monitor(self, **kwargs):
q = check_GET(kwargs)
cpumem_monitor = self.status.cpumem_graph_data(**q)
header = "time,Cpu,Mem,Disk\n"
yield header
for cpu, disk, mem in zip(cpumem_monitor["cpus"],
cpumem_monitor["disks"],
cpumem_monitor["mems"]):
tm = str(cpu["time"]).strip()
cpu = str(cpu["usage"]).strip()
mem = str(mem["usage"]).strip()
disk = str(disk["usage"]).strip()
yield "{},{},{},{}\n".format(tm, cpu, mem, disk)
@cherrypy.expose
def network_monitor(self, **kwargs):
q = check_GET(kwargs)
network_monitor = self.status.network_graph_data(**q)
header = "time,Bin,Bout,Din,Dout,Ein,Eout\n"
yield header
for traf in network_monitor["traffic"]:
tm = str(traf["time"]).strip()
Bin = str(traf["rate_b_in"]/30/1024).strip()
Bout = str(traf["rate_b_out"]/30/1024).strip()
Din = str(traf["rate_drop_in"]).strip()
Dout = str(traf["rate_drop_out"]).strip()
Ein = str(traf["rate_e_in"]).strip()
Eout = str(traf["rate_e_out"]).strip()
yield "{},{},{},{},{},{},{}\n".format(
tm,
Bin,
Bout,
Din,
Dout,
Ein,
Eout
)
@cherrypy.expose
def solcap_monitor(self, **kwargs):
q = check_GET(kwargs)
solcap_monitor = self.status.solcap_graph_data(**q)
header = "time,Solar,Capacitor\n"
yield header
for Sol, Cap in zip(solcap_monitor['sols'],
solcap_monitor['caps']):
tm = str(Sol["time"]).strip()
try:
solar_value = float(str(Sol["voltage"]).strip()) / 100
cap_value = float(str(Cap["voltage"]).strip())
except:
solar_value = str(Sol["voltage"])
cap_value = str(Cap["voltage"])
yield "{},{},{}\n".format(tm, solar_value, cap_value)
@cherrypy.expose
def esp_battery_monitor(self, **kwargs):
q = check_GET(kwargs)
place_tag = q['type']
esp_bat_monitor = self.iot.esp_battery_graph_data(**q)
header = "time,batt({_place_tag}),batt_perc({_place_tag}),batt_low({_place_tag})\n".format(
_place_tag=place_tag
)
yield header
for batt in esp_bat_monitor['volts']:
tm_batt = str(batt["time"]).strip()
try:
batt_val = str(float(batt["voltage"]) / 1023).strip()
except:
batt_val = 0
batt_perc = 4.39
batt_low = 3.1
yield "{},{},{},{}\n".format(tm_batt, batt_val, batt_perc, batt_low)
class DynamicStatus(object):
def __init__(self):
self.influx_status_client = config.Conf.influx_status_client
def FreshValues(self, **kwargs):
''' Get most up-to-date status reading.
returns:
dict(): {'time': 'YYYY-mm-DDTHH:MM:SS.149636706Z',
'ISS_solar': float(V),
'ISS_cap': float(V),
'IoT_bat': {'IoT_dev': float(V), ... },
'cpu': int(%),
'mem': int(%),
'dsk': int(%),
'net': {'dev': [int(upKB), int(downKB)], ... }
}
'''
iss_query = "SELECT last(*) "\
+ "FROM realtime.iss " \
+ "WHERE time > now() - 10m "\
+ "GROUP BY type fill(0)"
raspi_query = "SELECT last(*) "\
+ "FROM realtime.RasPI "\
+ "WHERE time > now() - 10m "\
+ "GROUP BY type fill(0)"
net_query = "SELECT last(rate_b_in) AS rate_b_in, "\
+ "last(rate_b_out) AS rate_b_out "\
+ "FROM monthly.net_aggregated "\
+ "WHERE time > now() - 1m "\
+ "GROUP BY host, type fill(0)"
iss_result = self.influx_status_client.query(iss_query)
raspi_result = self.influx_status_client.query(raspi_query)
net_result = self.influx_status_client.query(net_query)
iss_solar = iss_result.get_points(measurement='iss',
tags={'type': 'solar'})
iss_capacitor = iss_result.get_points(measurement='iss',
tags={'type': 'capacitor'})
RasPI_cpu = raspi_result.get_points(measurement='RasPI',
tags={'type': 'cpu'})
RasPI_disk = raspi_result.get_points(measurement='RasPI',
tags={'type': 'disk'})
RasPI_mem = raspi_result.get_points(measurement='RasPI',
tags={'type': 'mem'})
net = net_result.get_points(measurement='net_aggregated',
tags={'host':'plutonium', 'type':'wlan0'})
try:
iss_solars = iss_solar.send(None)
iss_capacitors = iss_capacitor.send(None)
RasPI_cpus = RasPI_cpu.send(None)
RasPI_disks = RasPI_disk.send(None)
RasPI_mems = RasPI_mem.send(None)
nets = net.send(None)
except:
return False
result = {}
t_stamp = time.strptime(RasPI_cpus['time'].split('.')[0],
"%Y-%m-%dT%H:%M:%S")
result['time'] = time.strftime("%d.%m.%Y %H:%M:%S", t_stamp)
result['iss_solar'] = round(iss_solars['last_voltage'] / 100, 1)
result['iss_capacitor'] = round(iss_capacitors['last_voltage'], 1)
result['RasPI_cpu'] = round(RasPI_cpus["last_usage"],1)
result['RasPI_disk'] = round(RasPI_disks["last_usage"],1)
result['RasPI_mem'] = round(RasPI_mems["last_usage"],1)
result['net'] = {
'b_in': round(nets['rate_b_in']/30/1024, 1),
'b_out': round(nets['rate_b_out']/30/1024, 1)
}
result['uptime'] = ''
return result
def cpumem_graph_data(self, **q):
'''
Function to get RasPi value readings from InfluxDB.
These parsed into a CSV
'''
query = "SELECT mean(usage) AS usage "\
+ "FROM realtime.RasPI "\
+ "WHERE time > NOW() - {} "\
+ "AND time < NOW() - {} " \
+ "GROUP BY time({}), type "\
+ "FILL(previous) "\
+ "ORDER BY time ASC"
query = query.format(q['range'],
q['end'],
q['granularity'])
db_results = self.influx_status_client.query(query)
cpu = db_results.get_points(measurement='RasPI',
tags={'type': 'cpu'})
disk = db_results.get_points(measurement='RasPI',
tags={'type': 'disk'})
mem = db_results.get_points(measurement='RasPI',
tags={'type': 'mem'})
cpus = [cpu_use for cpu_use in cpu]
disks = [disks_use for disks_use in disk]
mems = [mems_use for mems_use in mem]
# Let's get the data from DB
result = {'cpus':cpus, 'disks':disks, 'mems':mems}
return result
def network_graph_data(self, **q):
'''
Function to get RasPi value readings from InfluxDB.
These parsed into a CSV
'''
query = "SELECT * "\
+ "FROM monthly.net_aggregated "\
+ "WHERE time > NOW() - {} "\
+ "AND time < NOW() - {} " \
+ "GROUP BY type,host "\
+ "FILL(0) "\
+ "ORDER BY time ASC"
query = query.format(q['range'],
q['end'])
db_results = self.influx_status_client.query(query)
traffic = db_results.get_points(measurement='net_aggregated',
tags={'type': q['type']})
traffics = [traf for traf in traffic]
result = {'traffic': traffics}
return result
def solcap_graph_data(self, **q):
'''
Function to get RasPi value readings from InfluxDB.
These parsed into a CSV
'''
query = "SELECT mean(voltage) as voltage "\
+ "FROM realtime.iss "\
+ "WHERE time > NOW() - {} "\
+ "AND time < NOW() - {} " \
+ "GROUP BY time({}), type "\
+ "FILL(previous) "\
+ "ORDER BY time ASC"
query = query.format(q['range'],
q['end'],
q['granularity'])
db_results = self.influx_status_client.query(query)
sol = db_results.get_points(measurement='iss',
tags={'type': 'solar'})
cap = db_results.get_points(measurement='iss',
tags={'type': 'capacitor'})
sols = [solar for solar in sol]
caps = [capacitor for capacitor in cap]
result = {'sols': sols, 'caps': caps}
return result
class DynamicIoT(object):
''' All IoT related methods. Currently, this goes to the weatherDB,
but is subject to change in the future.
'''
def __init__(self):
self.influx_iot_client = config.Conf.influx_iot_client
def esp_battery_graph_data(self, **q):
'''
Function to get RasPi value readings from InfluxDB.
These parsed into a CSV
'''
query = "SELECT mean(battery) as voltage "\
+ "FROM yearly.usense_aggregated "\
+ "WHERE time > NOW() - {} "\
+ "AND time < NOW() - {} " \
+ "GROUP BY time({}), type "\
+ "FILL(previous) "\
+ "ORDER BY time ASC"
query = query.format(q['range'],
q['end'],
q['granularity'])
db_results = self.influx_iot_client.query(query)
volt = db_results.get_points(measurement='usense_aggregated',
tags={'type': q['type']})
volts = [bat_volt for bat_volt in volt]
result = {'volts': volts}
return result
def usense_temphumi_graph_data(self, **q):
'''
Function to get RasPi value readings from InfluxDB.
These parsed into a CSV
'''
query = "SELECT mean(temperature) as temp, "\
+ "mean(humidity) as hum "\
+ "FROM yearly.usense_aggregated "\
+ "WHERE time > NOW() - {} "\
+ "AND time < NOW() - {} " \
+ "GROUP BY time({}), type "\
+ "FILL(previous) "\
+ "ORDER BY time ASC"
query = query.format(q['range'],
q['end'],
q['granularity'])
db_results = self.influx_iot_client.query(query)
temphumi = db_results.get_points(measurement='usense_aggregated',
tags={'type': q['type']})
temphumis = [temp_humi for temp_humi in temphumi]
result = {'temphumis': temphumis}
return result
class DynamicWeather(object):
'''Weather reports, taken dynamically from InfluxDB.
All measurements tailored to suit the Davis Vantage Vue weather
station'''
def __init__(self):
self.influx_weather_client = config.Conf.influx_weather_client
self.helpers = Helper()
def FreshValues(self, **kwargs):
''' Get most up-to-date status reading.
returns:
dict(): {'time': 'YYYY-mm-DDTHH:MM:SS.149636706Z',
'wind_speed': float(),
'wind_direction': float(),
'wind_gust': float(),
'temp_out': float(),
'temp_in': float(),
'hum_out': float(),
'hum_in': float(),
'pressure': float(),
'rainrate': float()
}
'''
wind_query = "SELECT last(*) "\
+ "FROM realtime.wind " \
+ "WHERE time > now() - 10m "\
+ "GROUP BY type fill(0)"
temphumi_query = "SELECT last(*) "\
+ "FROM realtime.temphumi "\
+ "WHERE time > now() - 10m "\
+ "GROUP BY type fill(0)"
rainrate_query = "SELECT last(*) "\
+ "FROM realtime.rain " \
+ "WHERE time > now() - 10m "\
+ "GROUP BY type fill(0)"
wind_result = self.influx_weather_client.query(wind_query)
temphumi_result = self.influx_weather_client.query(temphumi_query)
rainrate_result = self.influx_weather_client.query(rainrate_query)
wind_speed = wind_result.get_points(measurement='wind',
tags={'type': 'speed'})
wind_gust = wind_result.get_points(measurement='wind',
tags={'type': 'windgust'})
wind_dir = wind_result.get_points(measurement='wind',
tags={'type': 'direction'})
temphumi_out = temphumi_result.get_points(measurement='temphumi',
tags={'type': 'external'})
temphumi_in = temphumi_result.get_points(measurement='temphumi',
tags={'type': 'internal'})
pressure = temphumi_result.get_points(measurement='temphumi',
tags={'type':'raw'})
rainrate = rainrate_result.get_points(measurement='rain',
tags={'type':'rainrate'})
try:
wind_speeds = wind_speed.send(None)
wind_directions = wind_dir.send(None)
wind_gusts = wind_gust.send(None)
temphumi_outs = temphumi_out.send(None)
temphumi_ins = temphumi_in.send(None)
pressures = pressure.send(None)
rainrates = rainrate.send(None)
except:
return False
result = {}
wind_dir = int(wind_directions['last_value'])
t_stamp = time.strptime(wind_speeds['time'].split('.')[0],
"%Y-%m-%dT%H:%M:%S")
result['time'] = time.strftime("%d.%m.%Y %H:%M:%S", t_stamp)
result['wind'] = {
'speed': round(wind_speeds['last_value'], 1),
'speed_ms': round(wind_speeds['last_value'] / 3.6, 1),
'dir': wind_dir,
'gust': round(wind_gusts['last_value'], 1),
'gust_ms': round(wind_gusts['last_value'] / 3.6, 1),
'dir_name': self.helpers.winddirName(wind_dir)
}
result['temperature'] = {
'out': temphumi_outs['last_temperature'],
'in': temphumi_ins['last_temperature']
}
result['humidity'] = {
'out': temphumi_outs['last_humidity'],
'in': temphumi_ins['last_humidity']
}
result['pressure'] = pressures['last_pressure']
result['rainrate'] = rainrates['last_value']
return result
def wind_graph_data(self, **q):
'''Function to get wind value readings from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time, Speed, Gusts, Direction
'''
query = "SELECT mean(value) AS value FROM wind "\
+ "WHERE time > NOW() - {} "\
+ "AND time < NOW() - {} " \
+ "GROUP BY time({}), type "\
+ "FILL(previous) "\
+ "ORDER BY time ASC"
query = query.format(q['range'],
q['end'],
q['granularity'])
db_results = self.influx_weather_client.query(query)
w_speed = db_results.get_points(measurement='wind',
tags={'type': 'speed'})
w_dir = db_results.get_points(measurement='wind',
tags={'type': 'direction'})
w_gust = db_results.get_points(measurement='wind',
tags={'type': 'windgust'})
w_speeds = [speed for speed in w_speed]
w_dirs = [direction for direction in w_dir]
w_gusts = [gust for gust in w_gust]
# Let's get the data from DB
result = {'w_speeds':w_speeds, 'w_dirs':w_dirs, 'w_gusts':w_gusts}
return result
def temphumi_graph_data(self, **q):
'''Function to get ttmper and humidity value readings from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time, Speed, Gusts, Direction
'''
query = "SELECT mean(humidity) AS Hum, "\
+ "mean(temperature) AS Temp "\
+ "FROM temphumi "\
+ "WHERE time > NOW() - {} "\
+ "AND time < NOW() - {} " \
+ "GROUP BY time({}), type "\
+ "FILL(previous) "\
+ "ORDER BY time ASC"
query = query.format(q['range'],
q['end'],
q['granularity'])
db_results = self.influx_weather_client.query(query)
th_in = db_results.get_points(measurement='temphumi',
tags={'type': 'internal'})
th_out = db_results.get_points(measurement='temphumi',
tags={'type': 'external'})
th_ints = [temphumi_in for temphumi_in in th_in]
th_outs = [temphumi_out for temphumi_out in th_out]
# Let's get the data from DB
result = {'th_ins':th_ints, 'th_outs':th_outs}
return result
def pressure_graph_data(self, **q):
'''
Function to get pressure readings from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time, Pressure
'''
query = "SELECT mean(pressure) AS pressure, "\
+ "mean(temperature) as Tout "\
+ "FROM temphumi "\
+ "WHERE type = 'raw' OR type='external' "\
+ "AND time > NOW() - {} "\
+ "AND time < NOW() - {} "\
+ "GROUP BY time({}), type "\
+ "FILL(previous) "\
+ "ORDER BY time ASC"
query = query.format(q['range'],
q['end'],
q['granularity'])
db_results = self.influx_weather_client.query(query)
press_raws = db_results.get_points(measurement='temphumi',
tags={'type': 'raw'})
Touts = db_results.get_points(measurement='temphumi',
tags={'type': 'external'})
result = {'press_raws': press_raws, 'Touts': Touts}
return result
def rrate_graph_data(self, **q):
'''
Function to get rain rate readings from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time, Rrate
'''
query = "SELECT mean(value) as total, max(val_max) "\
+ "FROM monthly.rainrate_aggregated "\
+ "WHERE type = 'rainrate' "\
+ "AND time > NOW() - {} "\
+ "AND time < NOW() - {} "\
+ "GROUP BY time({}), type "\
+ "FILL(previous) "\
+ "ORDER BY time ASC"
query = query.format(q['range'],
q['end'],
q['granularity'])
db_results = self.influx_weather_client.query(query)
rrate_result = db_results.get_points(measurement='rainrate_aggregated',
tags={'type': 'rainrate'})
rrates = [rrate for rrate in rrate_result]
result = {'rrates': rrates}
return result