Files
freedavis/web/dynamic.py
2018-07-02 10:59:57 +02:00

498 lines
21 KiB
Python
Executable File

#!/usr/bin/python3
import os
import sys
import cherrypy
import influxdb
import time
import datetime
import json
from cherrypy.lib.httputil import parse_query_string
# Universal variables
_SCRIPT_PATH = os.path.dirname(sys.argv[0])
influx_host = 'localhost'
influx_port = 8086
influx_user = 'pi'
influx_pwd = 'freedavis'
influx_db = 'voltage'
influx_weather_db = 'weather'
influx_status_db = 'status'
variables_known = ["range", "granularity", "start", "end"]
default_variables = {"range": "1h", "granularity": "30s", "end": "1s"}
class DynamicData(object):
def __init__(self):
self.influx_client = influxdb.client.InfluxDBClient(
influx_host, influx_port, influx_user, influx_pwd, influx_db
)
self.influx_weather_client = influxdb.client.InfluxDBClient(
influx_host, influx_port, influx_user, influx_pwd, influx_weather_db
)
self.influx_status_client = influxdb.client.InfluxDBClient(
influx_host, influx_port, influx_user, influx_pwd, influx_status_db
)
@cherrypy.expose
def index(self):
return "Index, MOFO"
def check_GET(self, arguments):
''' No other purpose than to make it more secure and only process the
values that are meant to be processed. Hardcoded on top, mate!
sets:
list(): key values of those which should be processed, merged
with deault values
'''
self.q = eval(str(arguments))
keys_to_process = {
key:self.q[key] for key in self.q.keys() if key in variables_known}
resulting_variables = default_variables.copy()
resulting_variables.update(keys_to_process)
self.q = resulting_variables
@cherrypy.expose
def solar_monitor(self, **kwargs):
'''
Function to get solar readings from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time, V_solar, I_solar, P_solar
'''
# GET variables now set, ready to reference them
self.check_GET(kwargs)
query1 = "SELECT mean(V_solar) as Usol, mean(I_solar) as Isol, "
query2 = "mean(V_array) as Varr, mean(I_consumption) as Icons FROM voltage "
query3 = "WHERE time > NOW() - {} AND time < NOW() - {} GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
query4 = "ORDER BY time DESC"
query = "{} {} {} {}".format(query1, query2, query3, query4)
measures = self.influx_client.query(query)
# Let's get the data from DB
header = "time,V_solar,I_solar,P_solar,P_cons\n"
yield header
for datapoint in measures["voltage"]:
tm = str(datapoint["time"]).strip()
solar_voltage = str(datapoint["Usol"]).strip()
solar_current = str(datapoint["Isol"]).strip()
array_voltage = str(datapoint["Varr"]).strip()
consumption_current = str(datapoint["Icons"]).strip()
if solar_voltage != 'None' and solar_current != 'None' \
and array_voltage != 'None' and consumption_current != 'None':
solar_voltage = float(solar_voltage) / 1000.00
solar_current = float(solar_current) / 1000.00
array_voltage = float(array_voltage) / 1000.00
consumption_current = float(consumption_current) / 1000.00
else:
solar_voltage = 0.00
solar_current = 0.00
array_voltage = 0.00
consumption_current = 0.00
# The 8W is the approximate internal consumption of the mppt controller ~ 0.15A
# This value was removed, No idea why it appeared there in the first place.
solar_power = round(solar_voltage * solar_current, 2)
consumption_power = round(array_voltage * consumption_current, 2)
yield "{},{},{},{},{}\n".format(tm, solar_voltage,
solar_current, solar_power,
consumption_power)
@cherrypy.expose
def wind_monitor(self, **kwargs):
'''
Function to get wind value readings from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time, Speed, Gusts, Direction
'''
# GET variables now set, ready to reference them
self.check_GET(kwargs)
speed_q1 = "SELECT mean(value) as w_speed FROM wind"
gust_q1 = "SELECT mean(value) as w_gust FROM wind"
direction_q1 = "SELECT mean(value) as w_dir FROM wind"
speed_q2 = "WHERE time > NOW() - {} AND time < NOW() - {} AND type = 'speed' GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
gust_q2 = "WHERE time > NOW() - {} AND time < NOW() - {} AND type = 'windgust' GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
direction_q2 = "WHERE time > NOW() - {} AND time < NOW() - {} AND type = 'direction' GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
q3 = "ORDER BY time DESC"
speed_query = "{} {} {}".format(speed_q1, speed_q2, q3)
gust_query = "{} {} {}".format(gust_q1, gust_q2, q3)
direction_query = "{} {} {}".format(direction_q1, direction_q2, q3)
rs_speed = self.influx_weather_client.query(speed_query)
rs_gust = self.influx_weather_client.query(gust_query)
rs_direction = self.influx_weather_client.query(direction_query)
# Let's get the data from DB
header = "time,Speed,Gusts,Direction\n"
yield header
for speed, gust, direction in zip(rs_speed['wind'], rs_gust['wind'], rs_direction['wind']):
tm_speed = str(speed["time"]).strip()
tm_gust = str(gust["time"]).strip()
tm_direction = str(direction["time"]).strip()
speed_value = str(speed["w_speed"]).strip()
gust_value = str(gust["w_gust"]).strip()
direction_value = str(direction["w_dir"]).strip()
#if tm_speed == tm_gust and tm_speed == tm_direction:
#tm = strptime(speed["time"]).strip(), "%Y-%m-%dT%H:%M:%SZ")
yield "{},{},{},{}\n".format(tm_speed, speed_value, gust_value, direction_value)
@cherrypy.expose
def temphumi_monitor(self, **kwargs):
'''
Function to get temperature and humidity readings from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time,
'''
# GET variables now set, ready to reference them
self.check_GET(kwargs)
temp_q1 = "SELECT mean(temperature) as temp FROM temphumi"
hum_q1 = "SELECT mean(humidity) as hum FROM temphumi"
in_q2 = "WHERE time > NOW() - {} AND time < NOW() - {} AND type = 'internal' GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
out_q2 = "WHERE time > NOW() - {} AND time < NOW() - {} AND type = 'external' GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
q3 = "ORDER BY time DESC"
temp_in_query = "{} {} {}".format(temp_q1, in_q2, q3)
temp_out_query = "{} {} {}".format(temp_q1, out_q2, q3)
hum_in_query = "{} {} {}".format(hum_q1, in_q2, q3)
hum_out_query = "{} {} {}".format(hum_q1, out_q2, q3)
rs_temp_in = self.influx_weather_client.query(temp_in_query)
rs_temp_out = self.influx_weather_client.query(temp_out_query)
rs_hum_in = self.influx_weather_client.query(hum_in_query)
rs_hum_out = self.influx_weather_client.query(hum_out_query)
# Let's get the data from DB
header = "time,T(ins),T(out),Humi(ins),Humi(out)\n"
yield header
for Tin, Tout, Hin, Hout in zip(rs_temp_in['temphumi'],
rs_temp_out['temphumi'],
rs_hum_in['temphumi'],
rs_hum_out['temphumi']):
tm_temp = str(Tin["time"]).strip()
temp_in_val = str(Tin["temp"]).strip()
temp_out_val = str(Tout["temp"]).strip()
hum_in_val = str(Hin["hum"]).strip()
hum_out_val = str(Hout["hum"]).strip()
#if tm_speed == tm_gust and tm_speed == tm_direction:
#tm = strptime(speed["time"]).strip(), "%Y-%m-%dT%H:%M:%SZ")
yield "{},{},{},{},{}\n".format(tm_temp, temp_in_val, temp_out_val, hum_in_val, hum_out_val)
@cherrypy.expose
def pressure_monitor(self, **kwargs):
'''
Function to get pressure readings from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time, Pressure
'''
# GET variables now set, ready to reference them
self.check_GET(kwargs)
query1 = "SELECT mean(pressure) as pressure FROM temphumi"
query2 = "WHERE type = 'adjusted' AND time > NOW() - {} AND time < NOW() - {} GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
query3 = "ORDER BY time DESC"
query = "{} {}".format(query1, query2, query3)
measures = self.influx_weather_client.query(query)
# Let's get the data from DB
header = "time,Pressure\n"
yield header
for datapoint in measures["temphumi"]:
tm = str(datapoint["time"]).strip()
pressure = str(datapoint["pressure"]).strip()
yield "{},{}\n".format(tm, pressure)
@cherrypy.expose
def solcap_monitor(self, **kwargs):
'''
Function to get solar and supercap readings from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time, Solar Irradiance, Capacitor
'''
# GET variables now set, ready to reference them
self.check_GET(kwargs)
solar_query1 = "SELECT mean(voltage) as solar FROM iss"
solar_query2 = "WHERE type = 'solar' AND time > NOW() - {} AND time < NOW() - {} GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
cap_query1 = "SELECT mean(voltage) as cap FROM iss"
cap_query2 = "WHERE type = 'capcaitor' AND time > NOW() - {} AND time < NOW() - {} GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
query3 = "ORDER BY time DESC"
query_solar = "{} {} {}".format(solar_query1, solar_query2, query3)
query_cap = "{} {} {}".format(cap_query1, cap_query2, query3)
measures_sol = self.influx_status_client.query(query_solar)
measures_cap = self.influx_status_client.query(query_cap)
# Let's get the data from DB
header = "time,Solar,Capacitor\n"
yield header
for Sol, Cap in zip(measures_sol['iss'], measures_cap['iss']):
tm = str(Sol["time"]).strip()
try:
solar_value = float(str(Sol["solar"]).strip()) / 100
except:
solar_value = ''
try:
cap_value = float(str(Cap["cap"]).strip())
except:
cap_value = ''
yield "{},{},{}\n".format(tm, solar_value, cap_value)
@cherrypy.expose
def cpumem_monitor(self, **kwargs):
'''
Function to get cpu,mem, disk % from InfluxDB.
These parsed into a CSV
yields: csv in raw, text format
time, Cpu Mem, Disk
'''
# GET variables now set, ready to reference them
self.check_GET(kwargs)
cpu_query1 = "SELECT mean(usage) as Cpu "
mem_query1 = "SELECT mean(usage) as Mem "
disk_query1 = "SELECT mean(usage) as Disk "
query2 = "FROM RasPI "
cpu_query3 = "WHERE type = 'cpu' AND time > NOW() - {} AND time < NOW() - {} GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
mem_query3 = "WHERE type = 'mem' AND time > NOW() - {} AND time < NOW() - {} GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
disk_query3 = "WHERE type = 'disk' AND time > NOW() - {} AND time < NOW() - {} GROUP BY time({})".format(
self.q['range'],
self.q['end'],
self.q['granularity'])
query4 = "ORDER BY time DESC"
query_cpu = "{} {} {} {}".format(cpu_query1, query2, cpu_query3, query4)
query_mem = "{} {} {} {}".format(mem_query1, query2, mem_query3, query4)
query_disk = "{} {} {} {}".format(disk_query1, query2, disk_query3, query4)
measures_cpu = self.influx_status_client.query(query_cpu)
measures_mem = self.influx_status_client.query(query_mem)
measures_disk = self.influx_status_client.query(query_disk)
# Let's get the data from DB
header = "time,Cpu,Mem,Disk\n"
yield header
for cpu, mem, disk in zip(measures_cpu['RasPI'], measures_mem['RasPI'], measures_disk['RasPI']):
tm = str(cpu["time"]).strip()
try:
cpu_value = float(str(cpu["Cpu"]).strip())
except:
solar_value = ''
try:
mem_value = float(str(mem["Mem"]).strip())
except:
cap_value = ''
try:
disk_value = float(str(disk["Disk"]).strip())
except:
disk_value = ''
yield "{},{},{},{}\n".format(tm, cpu_value, mem_value, disk_value)
@cherrypy.expose
def historical_values(self, **kwargs):
'''
Function to all historical readings from InfluxDB.
These parsed into a CSV? Dict?
returns: csv in raw, text format
time, V_solar, I_solar
select mean(I_solar) as I_solar from voltage where time > now() - 10m group by time(30s) order by time desc
'''
# GET variables now set, ready to reference them
measure_range = kwargs['range']
query1 = "SELECT mean(V_array) as Uarr, mean(I_consumption) as Icon, "
query2 = "mean(V_solar) as Usol, mean(I_solar) as Isol, "
query3 = "mean(V_unit1) as Us1, mean(V_unit2) as Us2, max(charging) as charge FROM voltage"
query4 = "WHERE time > NOW() - {} GROUP BY time(30s)".format(measure_range)
query5 = "ORDER BY time DESC"
query = "{} {} {} {} {}".format(query1, query2, query3, query4, query5)
measures = self.influx_client.query(query)
# Let's get the data from DB
result = []
for datapoint in measures["voltage"]:
tm = datapoint['time']
try:
array_voltage = round(float(datapoint["Uarr"]), 2)
current_consumed = round(float(datapoint["Icon"]) / array_voltage, 2)
solar_voltage = round(float(datapoint["Usol"]), 2)
solar_current = round(float(datapoint["Isol"]) / solar_voltage , 2)
Us1 = round(float(datapoint["Us1"]), 2)
Us2 = round(float(datapoint["Us2"]), 2)
except:
continue
charging = int(datapoint["charge"])
row = {"time": tm,
"V_array": array_voltage,
"I_consumption": current_consumed,
"V_solar": solar_voltage,
"I_solar": solar_current,
"V_unit1": Us1,
"V_unit2": Us2,
"charging": charging}
result.append(row)
return result
@cherrypy.expose
def stat_values(self, **kwargs):
'''
Function to all historical readings from InfluxDB.
These parsed into a CSV? Dict?
returns: csv in raw, text format
24Wh_consumed, 24Wh_solar
select mean(I_solar) as I_solar from voltage where time > now() - 10m group by time(30s) order by time desc
'''
# GET variables now set, ready to reference them
_days = kwargs['days']
d = datetime.datetime.now()
measures = []
result = []
for t_range in range(1, _days*24, 24):
day = (d - datetime.timedelta(hours = t_range)).strftime("%Y-%m-%d")
query1 = "SELECT mean(V_array) as Uarr, mean(I_consumption) as Icon, "
query2 = "mean(V_solar) as Usol, mean(I_solar) as Isol, "
query3 = "mean(V_unit1) as Us1, mean(V_unit2) as Us2, max(charging) as charge FROM voltage"
query4 = "WHERE time > '{} 00:00:00' AND time < '{} 23:59:59' GROUP BY time(1h) fill(0)".format(day, day)
query5 = "ORDER BY time DESC"
query = "{} {} {} {} {}".format(query1, query2, query3, query4, query5)
measure = self.influx_client.query(query)
# Let's get the data from DB
tm = []
Ubat = []
Icon = []
Usol = []
Isol = []
Uss1 = []
Uss2 = []
P_cons = []
P_sol = []
charging = 0
day_result = []
for datapoint in measure["voltage"]:
#print(datapoint)
tstamp = datapoint['time']
array_voltage = round(float(datapoint["Uarr"]), 2)
current_consumed = round(float(datapoint["Icon"]), 2)
solar_voltage = round(float(datapoint["Usol"]), 2)
solar_current = round(float(datapoint["Isol"]), 2)
Us1 = round(float(datapoint["Us1"]), 2)
Us2 = round(float(datapoint["Us2"]), 2)
charge = int(datapoint["charge"])
p_consumed = round(float(array_voltage / 1000.00 \
* current_consumed / 1000.00), 2)
p_solar = round(float(solar_voltage / 1000.00 \
* solar_current / 1000.00), 2)
tm.append(tstamp),
Ubat.append(array_voltage),
Icon.append(current_consumed),
Usol.append(solar_voltage),
Isol.append(solar_current),
Uss1.append(Us1),
Uss2.append(Us2),
charging = charging + charge
P_cons.append(p_consumed)
P_sol.append(p_solar)
row = {"time": tm,
"V_array": Ubat,
"I_consumption": Icon,
"V_solar": Usol,
"I_solar": Isol,
"V_unit1": Uss1,
"V_unit2": Uss2,
"charging": charging,
"P_cons": P_cons,
"P_sol": P_sol}
try:
day_result = [
row['time'][0][0:10],
round(min(row['V_array']) / 1000, 2),
round(sum(row['I_consumption']) / 1000, 2),
round(max(row['V_solar']) / 1000, 2),
round(sum(row['I_solar']) / 1000, 2),
round(min(row['V_unit1']) / 1000, 2),
round(min(row['V_unit2']) / 1000, 2),
row['charging'],
round(sum(row['P_cons']),2),
round(sum(row['P_sol']), 2)
]
except:
day_result = [
d.strftime("%Y-%m-%d"),
0,
0,
0,
0,
0,
0,
0,
0,
0
]
# need to compute averages, mate...
print(day_result)
result.append(day_result)
return result